88 research outputs found

    Assessing the potential for Salmonella growth in rehydrated dry dog food

    Get PDF
    A substantial percentage of dog owners add water to dry dog food to increase its palatability. The recent association of Salmonella contamination of dry pet foods with salmonellosis cases in both dogs and their owners has generated a need to determine the ability of Salmonella to grow in eight commercial brands of rehydrated dry dog food. Eight brands of commercial dry dog food were rehydrated to 20, 35 and 50% added moisture, inoculated with two S. enterica strains (~105 CFU/g) and incubated for 72 h at 18 °C, 22 °C, or 28 °C. Dog food brand, moisture content, and temperature affected pathogen growth/survival patterns. Rehydration to 20% moisture did not support growth of S. enterica, and in general there was a 0.5–2.0 Log decline. At 35% moisture and 28 °C, 4 of 8 brands supported up to 3.4 Log(CFU/g) of growth, while Salmonella levels declined in three brands, and remained unchanged in one. Rehydration to 50% moisture at 28 °C supported increases of up to 4.6 Log(CFU/g) in 5 of 8 brands. Growth kinetics determinations with two of the brands that supported growth had calculated lag times, generation times, and maximum population densities of 4.4 and 2.2 h, 1.4 and 10.8 h, and 7.3 and 6.9 Log(CFU/g) when rehydrated to 35% moisture and held at 30 °C. Results of this study establish that the rehydration of dry dog food with sufficient amounts of water may support the growth of S. enterica. Based on the most rapid observed lag times, growth of Salmonella, if present, in rehydrated dog food could be avoided by discarding or refrigerating uneaten portions within 2–3 h of rehydration. These data allow accidental or intentional rehydration of dry dog food to be factored into predictive microbiology models and exposure assessments.https://doi.org/10.1186/s40550-016-0043-

    SLUG: a new target of lymphoid enhancer factor-1 in human osteoblasts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphoid Enhancer Factor-1 (Lef-1) is a member of a transcription factor family that acts as downstream mediator of the Wnt/β-catenin signalling pathway which plays a critical role in osteoblast proliferation and differentiation. In a search for Lef-1 responsive genes in human osteoblasts, we focused on the transcriptional regulation of the SLUG, a zinc finger transcription factor belonging to the Snail family of developmental proteins. Although the role of SLUG in epithelial-mesenchymal transition and cell motility during embryogenesis is well documented, the functions of this factor in most normal adult human tissues are largely unknown. In this study we investigated SLUG expression in normal human osteoblasts and their mesenchymal precursors, and its possible correlation with Lef-1 and Wnt/β-catenin signalling.</p> <p>Results</p> <p>The experiments were performed on normal human primary osteoblasts obtained from bone fragments, cultured in osteogenic conditions in presence of Lef-1 expression vector or GSK-3β inhibitor, SB216763. We demonstrated that the transcription factor SLUG is present in osteoblasts as well as in their mesenchymal precursors obtained from Wharton's Jelly of human umbilical cord and induced to osteoblastic differentiation. We found that SLUG is positively correlated with RUNX2 expression and deposition of mineralized matrix, and is regulated by Lef-1 and β-catenin. Consistently, Chromatin Immunoprecipitation (ChIP) assay, used to detect the direct Lef/Tcf factors that are responsible for the promoter activity of SLUG gene, demonstrated that Lef-1, TCF-1 and TCF4 are recruited to the SLUG gene promoter "<it>in vivo</it>".</p> <p>Conclusion</p> <p>These studies provide, for the first time, the evidence that SLUG expression is correlated with osteogenic commitment, and is positively regulated by Lef-1 signal in normal human osteoblasts. These findings will help to further understand the regulation of the human SLUG gene and reveal the biological functions of SLUG in the context of bone tissue.</p

    Quantitative assessment of aflatoxin exposure and hepatocellular carcinoma (HCC) risk associated with consumption of select Nigerian staple foods

    Get PDF
    Aflatoxin contamination of staple grains and legumes has been linked to hepatocellular carcinoma (HCC) and other adverse health outcomes, constituting a substantial public health concern globally. Low-resource food environments in sub-Saharan Africa are often under-regulated and are particularly vulnerable to adverse health and nutrition outcomes associated with aflatoxin exposure. This study identifies levels of HCC risk in the northern Nigerian adult population, leveraging a systematic review of available evidence on aflatoxin contamination in Nigerian maize, groundnut, rice, cowpea, and soybean. Estimated dietary intake (EDI) was computed using publicly available dietary consumption data and a probabilistic quantitative risk assessment was conducted to determine the relative risk of HCC associated with consumption of selected aflatoxin-contaminated commodities. In total, 41 eligible studies reporting aflatoxin contamination were used to model the distribution of aflatoxin concentrations in Nigerian commodities. EDIs for maize, groundnut, rice, and cowpea exceeded the provisional maximum tolerable daily intake (PMTDI) level of 1 kgbw-1 day-1, with maize yielding the highest mean EDI (36.7 kgbw-1 day-1). The quantitative risk assessment estimated that 1.77, 0.44, 0.43, 0.15, and 0.01 HCC cases per year/100,000 population were attributable to aflatoxin exposure through maize, groundnut, rice, cowpea, and soybean, respectively. Sensitivity analysis revealed that aflatoxin concentration, dietary consumption levels, consumption frequency, and other variables have differing relative contributions to HCC risk across commodities. These findings constitute a novel multi-study risk assessment approach in the Nigerian context and substantiate existing evidence suggesting that there is reason for public health concern regarding aflatoxin exposure in the Nigerian population

    Hypoxia Preconditioning of Human MSCs: a Direct Evidence of HIF-1Îą and Collagen Type XV Correlation

    Get PDF
    Background/Aims: Mesenchymal stromal cells (MSCs) hold considerable promise in bone tissue engineering, but their poor survival and potency when in vivo implanted limits their therapeutic potential. For this reason, the study on culture conditions and cellular signals that can influence the potential therapeutic outcomes of MSCs have received considerable attention in recent years. Cell maintenance under hypoxic conditions, in particular for a short period, is beneficial for MSCs, as low O2 tension is similar to that present in the physiologic niche, however the precise mechanism through which hypoxia preconditioning affects these cells remains unclear. Methods: In order to explore what happens during the first 48 h of hypoxia preconditioning in human MSCs (hMSCs) from bone marrow, the cells were exposed to 1.5% O2 tension in the X3 Hypoxia Hood and Culture Combo – Xvivo System device. The expression modulation of critical genes which could be good markers of increased osteopotency has been investigated by Western blot, immunufluorescence and ELISA. Luciferase reporter assay and Chromatin immunoprecipitation was used to investigate the regulation of the expression of Collagen type XV (ColXV) gene. Results: We identified ColXV as a new low O2 tension sensitive gene, and provided a novel mechanistic evidence that directly HIF-1α (hypoxia-inducible factor-1 alpha) mediates ColXV expression in response to hypoxia, since it was found specifically in vivo recruited at ColXV promoter, in hypoxia-preconditioned hMSCs. This finding, together the evidence that also Runx2, VEGF and FGF-2 expression increased in hypoxia preconditioned hMSCs, is consistent with the possibility that increased ColXV expression in response to hypoxia is mediated by an early network that supports the osteogenic potential of the cells. Conclusion: These results add useful information to understand the role of a still little investigated collagen such as ColXV, and identify ColXV as a marker of successful hypoxia preconditioning. As a whole, our data give further evidence that hypoxia preconditioned hMSCs have greater osteopotency than normal hMSCs, and that the effects of hypoxic regulation of hMSCs activities should be considered before they are clinically applied

    Silencing of anti-chondrogenic microRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo

    Get PDF
    There is a growing demand for the development of experimental strategies for efficient articular cartilage repair. Current tissue engineering-based regenerative strategies make use of human mesenchymal stromal cells (hMSCs). However, when implanted in a cartilage defect, control of hMSCs differentiation towards the chondrogenic lineage remains a significant challenge. We have recently demonstrated that silencing the anti-chondrogenic regulator microRNA-221 (miR-221) was highly effective in promoting in vitro chondrogenesis of monolayered hMSCs in the absence of the chondrogenic induction factor TGF-β. Here we investigated the feasibility of this approach first in conventional 3D pellet culture and then in an in vivo model. In pellet cultures, we observed that miR-221 silencing was sufficient to drive hMSCs towards chondrogenic differentiation in the absence of TGF-β. In vivo, the potential of miR-221 silenced hMSCs was investigated by first encapsulating the cells in alginate and then by filling a cartilage defect in an osteochondral biopsy. After implanting the biopsy subcutaneously in nude mice, we found that silencing of miR-221 strongly enhanced in vivo cartilage repair compared to the control conditions (untreated hMSCs or alginate-only). Notably, miR-221 silenced hMSCs generated in vivo a cartilaginous tissue with no sign of collagen type X deposition, a marker of undesired hypertrophic maturation. Altogether our data indicate that silencing miR-221 has a pro-chondrogenic role in vivo, opening new possibilities for the use of hMSCs in cartilage tissue engineering. This article is protected by copyright. All rights reserved

    Unorthodox localization of P2X7 receptor in subcellular compartments of skeletal system cells

    Get PDF
    Identifying the subcellular localization of a protein within a cell is often an essential step in understanding its function. The main objective of this report was to determine the presence of the P2X7 receptor (P2X7R) in healthy human cells of skeletal system, specifically osteoblasts (OBs), chondrocytes (Chs) and intervertebral disc (IVD) cells. This receptor is a member of the ATP-gated ion channel family, known to be a main sensor of extracellular ATP, the prototype of the danger signal released at sites of tissue damage, and a ubiquitous player in inflammation and cancer, including bone and cartilaginous tissues. Despite overwhelming data supporting a role in immune cell responses and tumor growth and progression, a complete picture of the pathophysiological functions of P2X7R, especially when expressed by non-immune cells, is lacking. Here we show that human wild-type P2X7R (P2X7A) was expressed in different samples of human osteoblasts, chondrocytes and intervertebral disc cells. By fluorescence microscopy (LM) and immunogold transmission electron microscopy we localized P2X7R not only in the canonical sites (plasma membrane and cytoplasm), but also in the nucleus of all the 3 cell types, especially IVD cells and OBs. P2X7R mitochondrial immunoreactivity was predominantly detected in OBs and IVD cells, but not in Chs. Evidence of subcellular localization of P2X7R may help to i. understand the participation of P2X7R in as yet unidentified signaling pathways in the joint and bone microenvironment, ii. identify pathologies associated with P2X7R mislocalization and iii. design specific targeted therapies

    Unraveling the role of microRNA/isomiR network in multiple primary melanoma pathogenesis.

    Get PDF
    Malignant cutaneous melanoma (CM) is a potentially lethal form of skin cancer whose worldwide incidence has been constantly increasing over the past decades. During their lifetime, about 8% of CM patients will develop multiple primary melanomas (MPMs), usually at a young age and within 3 years from the first tumor/diagnosis. With the aim of improving our knowledge on MPM biology and pathogenesis, we explored the miRNome of 24 single and multiple primary melanomas, including multiple tumors from the same patient, using a small RNA-sequencing approach. From a supervised analysis, 22 miRNAs were differentially expressed in MPM compared to single CM, including key miRNAs involved in epithelial-mesenchymal transition. The first and second melanoma from the same patient presented a different miRNA profile. Ten miRNAs, including miR-25-3p, 149-5p, 92b-3p, 211-5p, 125a-5p, 125b-5p, 205-5p, 200b-3p, 21-5p, and 146a-5p, were further validated in 47 single and multiple melanoma samples. Pathway enrichment analysis of miRNA target genes revealed a more differentiated and less invasive status of MPMs compared to CMs. Bioinformatic analyses at the miRNA isoform (isomiR) level detected a panel of highly expressed isomiRs belonging to miRNA families implicated in human tumorigenesis, including miR-200, miR-30, and miR-10 family. Moreover, we identified hsa-miR-125a-5p|0|-2 isoform as tenfold over-represented in melanoma than the canonical form and differentially expressed in MPMs arising in the same patient. Target prediction analysis revealed that the miRNA shortening could change the pattern of target gene regulation, specifically in genes implicated in cell adhesion and neuronal differentiation. Overall, we provided a putative and comprehensive characterization of the miRNA/isomiR regulatory network of MPMs, highlighting mechanisms of tumor development and molecular features differentiating this subtype from single melanomas
    • …
    corecore